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= Uncertainty is a fundamental notion.
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= Conformal prediction tries to fix this issue.
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Confidence predictors

Modelling probability distributions might be too hard.

=1 Confidence predictor

A (set-valued) function from feature tuples to (sets of) possible
responses.

This is similar to confidence intervals in statistics.



N P(y c {2,3,9}) > 90%




Example: Classification

N P(y € {2,3,9}) > 90%
. P(y c {8}) > 90%
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Marginal Validity



Important limitations to standard techniques that make them
unappealing (to ML practitioners):

= model limitations (e.g. linearity)
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Important limitations to standard techniques that make them
unappealing (to ML practitioners):

= model limitations (e.g. linearity),
= data assumptions (e.g. normality), and

= computational inefficiency (e.g. Bayesian inference).
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Conformal prediction tries to overcome all of these issues:
= no model constraints,
= weak data assumptions,
= efficient implementations exist, and

= can incorporate other methodologies (e.g. online learning).
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Exchangeability

= Exchangeability

If the probability of observing a data sequence is independent
of its order, it is said to be exchangeable.
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Exchangeability

= Exchangeability

If the probability of observing a data sequence is independent
of its order, it is said to be exchangeable.
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Exchangeability

= Irrelevant order implies that the ranks of the data points are
uniformly distributed
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Exchangeability

= Irrelevant order implies that the ranks of the data points are
uniformly distributed

= This is the working horse of my dissertation!
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Nonconformity

=1 Nonconformity measure

A function A : X x ) — R that assigns a (nonconformity) score
to every data point.
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Nonconformity

=1 Nonconformity measure

A function A : X x ) — R that assigns a (nonconformity) score
to every data point.
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Example: Regression

Given a regression model p : X — R, some typical nonconformity
measures are:
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Example: Regression

Given a regression model p : X — R, some typical nonconformity

measures are:

= Standard (residual) score:
Ares(x/y) = |P(x) - ]/| ’

= Normalized (residual) score:

lo(x) =yl

A(rTes(x/y) = O’(X)

7

where ¢ : X —» R* is an uncertainty estimate such as the
standard deviation.
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The (inductive) conformal prediction algorithm has the following
simple workflow:
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Conformal prediction

The (inductive) conformal prediction algorithm has the following

simple workflow:

1.

Choose a calibration set {(x;,y;)}i<,, a nonconformity
measure A : X x )Y — R and a significance level « € [0, 1].

Calculate the score a; := A(x;,y;) for every calibration point.
Determine the critical score a* := q(l_a)(“l/n)({a,-},gn).

For a new x, include all y such that A(x,y) < a*.
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Conformal prediction

1‘0(-—'?0070 ______
_________ p— _

%

0] —\ )

J

s 1

P

S A
3 l ]9

s

b

) . '

) J )

asqse?s'qw’s’
cores

17



Statistical guarantees

~ Theorem (Conservative validity)

If the data is exchangeable, the conformal predictor is (conser-
vatively) valid:

Prob(Y e I'*(X)) > 1—a.
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Statistical guarantees

Theorem (Conservative validity)

If the data is exchangeable, the conformal predictor is (conser-

vatively) valid:

Prob(Y e I'*(X)) > 1—a.

Theorem (Strict validity)

If the nonconformity scores are also distinct, the conformal pre-

dictor is strictly valid:

Prob(Y e T*(X)) =1 —u«.
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Experiments
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Experiments
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Conditional Validity
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Example: Weight prediction
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Given a partition of the in-
stance space

k: Xx)Y-{01,..,n},

we construct a model for each

subgroup
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Alternative

Can we approximate conditional validity with a single conformal
predictor?
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=1 Pivot

If the distribution of f(Xy), with Xy ~ Py, is independent of
the parameter 6 € ©, the function f is said to be pivotal for
the family of distributions {Py}gco-
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Standardization
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Independence

~ Contribution (Pivotal measure)

If the nonconformity measure is pivotal with respect to the
classwise distributions, the conformal predictor is conditionally
valid.
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Independence

~ Contribution (Pivotal measure)

If the nonconformity measure is pivotal with respect to the
classwise distributions, the conformal predictor is conditionally
valid.

Intuition: We can combine data sets if they come from the same
distribution.
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Normalization

~ Contribution (Parametric form)

If the conditional distribution is of the form

_ 1y —p)
119 = sVl )

the nonconformity measure A{,, gives a conditionally valid con-

formal predictor.
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Experiments
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Clusterwise Validity




Remaining issue

= Mondrian approach: strong guarantees, but data required per
class.
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Remaining issue

= Mondrian approach: strong guarantees, but data required per

class.

= non-Mondrian approach: guarantees (in pivotal scenario) but
data required for correct models.
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Clusterwise validity
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Clusterwise validity

Theorem (Clusterwise validity)

The deviation from conditional validity is bounded by the sta-
tistical diameter of the cluster w:

Prob(Y e I'*(X) | x(X,Y)=¢ccw)>1—a— meaxd(c,c’).
ccw

32



~ Contribution (Lipschitz continuity)

If the conditional distributions Py, x depend smoothly on X, the
clusterwise validity result remains valid.
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Hierarchies
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Extreme classification

Hierarchies can be too coarse!
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Conclusion

= Conformal prediction is versatile and easy to use.
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Conclusion

= Conformal prediction is versatile and easy to use.

= Conditional validity is important and can be achieved
(approximately).

= Interpretation and usefulness of results is not always
straightforward.
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Future perspectives

Interesting possibilities:

= extreme classification
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Future perspectives

Interesting possibilities:
= extreme classification,
= multivariate problems, and

= time series.
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