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Introduction



Motivation

• Uncertainty is a fundamental notion.

• Sadly, it has became a secondary notion

• Conformal prediction tries to fix this issue.
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Predictions
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Predictions
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Measurement noise
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Stochasticity
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Models
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Confidence predictors

Modelling probability distributions might be too hard.

Confidence predictor

A (set-valued) function from feature tuples to (sets of) possible
responses.

This is similar to confidence intervals in statistics.
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Example: Classification
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Overview

1. Marginal validity

2. Conditional validity

3. Clusterwise validity

4. Future perspectives
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Marginal Validity



Problems

Important limitations to standard techniques that make them
unappealing (to ML practitioners):

• model limitations (e.g. linearity)

,

• data assumptions (e.g. normality), and

• computational inefficiency (e.g. Bayesian inference).
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Solution

Conformal prediction tries to overcome all of these issues:

• no model constraints

,

• weak data assumptions,

• efficient implementations exist, and

• can incorporate other methodologies (e.g. online learning).
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Exchangeability

Exchangeability

If the probability of observing a data sequence is independent
of its order, it is said to be exchangeable.
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Exchangeability

• Irrelevant order implies that the ranks of the data points are
uniformly distributed

• This is the working horse of my dissertation!
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Nonconformity

Nonconformity measure

A function 𝐴 ∶ X ×Y → ℝ that assigns a (nonconformity) score
to every data point.

x 𝜌(𝑥) 𝑦 𝐴(𝑥, 𝑦)

0.5 1 2.5 1.5
2.5 5 3 2
1 2 10 8
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Example: Regression

Given a regression model 𝜌 ∶ X → ℝ, some typical nonconformity
measures are:

• Standard (residual) score:

𝐴res(𝑥, 𝑦) ∶= |𝜌(𝑥) − 𝑦| ,

• Normalized (residual) score:

𝐴𝜎
res(𝑥, 𝑦) ∶=

|𝜌(𝑥) − 𝑦|
𝜎(𝑥) ,

where 𝜎 ∶ X → ℝ+ is an uncertainty estimate such as the
standard deviation.
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Conformal prediction

The (inductive) conformal prediction algorithm has the following
simple workflow:

1. Choose a calibration set {(𝑥𝑖, 𝑦𝑖)}𝑖≤𝑛, a nonconformity
measure 𝐴 ∶ X × Y → ℝ and a significance level 𝛼 ∈ [0, 1].

2. Calculate the score 𝑎𝑖 ∶= 𝐴(𝑥𝑖, 𝑦𝑖) for every calibration point.

3. Determine the critical score 𝑎∗ ∶= 𝑞(1−𝛼)(1+1/𝑛)({𝑎𝑖}𝑖≤𝑛).

4. For a new 𝑥, include all 𝑦 such that 𝐴(𝑥, 𝑦) ≤ 𝑎∗.
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Conformal prediction

17



Statistical guarantees

Theorem (Conservative validity)

If the data is exchangeable, the conformal predictor is (conser-
vatively) valid:

Prob(𝑌 ∈ Γ𝛼(𝑋)) ≥ 1 − 𝛼 .

Theorem (Strict validity)

If the nonconformity scores are also distinct, the conformal pre-
dictor is strictly valid:

Prob(𝑌 ∈ Γ𝛼(𝑋)) = 1 − 𝛼 .
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Experiments
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Experiments
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Conditional Validity



Cheating
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Example: Weight prediction
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Mondriaan

Given a partition of the in-
stance space

𝜅 ∶ X × Y → {0, 1, … , 𝑛} ,

we construct a model for each
subgroup

Γ1

Γ2

Γ5

Γ3

Γ6

Γ7

Γ4

Γ5

Γ8
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Alternative

Can we approximate conditional validity with a single conformal
predictor?
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Pivots

Pivot

If the distribution of 𝑓(𝑋𝜃), with 𝑋𝜃 ∼ 𝑃𝜃, is independent of
the parameter 𝜃 ∈ Θ, the function 𝑓 is said to be pivotal for
the family of distributions {𝑃𝜃}𝜃∈Θ.
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Standardization

26



Independence

Contribution (Pivotal measure)

If the nonconformity measure is pivotal with respect to the
classwise distributions, the conformal predictor is conditionally
valid.

Intuition: We can combine data sets if they come from the same
distribution.
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Normalization

Contribution (Parametric form)

If the conditional distribution is of the form

𝑓(𝑦 ∣ 𝑥) = 1
𝜎(𝑥)𝑔(

𝑦 − 𝜇(𝑥)
𝜎(𝑥) ) ,

the nonconformity measure 𝐴𝜎
res gives a conditionally valid con-

formal predictor.
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Experiments
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Clusterwise Validity



Remaining issue

• Mondrian approach: strong guarantees, but data required per
class.

• non-Mondrian approach: guarantees (in pivotal scenario) but
data required for correct models.
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Clusterwise validity
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Clusterwise validity

Theorem (Clusterwise validity)

The deviation from conditional validity is bounded by the sta-
tistical diameter of the cluster 𝜔:

Prob(𝑌 ∈ Γ𝛼(𝑋) ∣ 𝜅(𝑋, 𝑌) = 𝑐, 𝑐 ∈ 𝜔) ≥ 1 − 𝛼 − max
𝑐′∈𝜔

𝑑(𝑐, 𝑐′) .
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Lipschitz

Contribution (Lipschitz continuity)

If the conditional distributions 𝑃𝑌∣𝑋 depend smoothly on 𝑋, the
clusterwise validity result remains valid.
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Hierarchies
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Extreme classification

Hierarchies can be too coarse!
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Conclusion

• Conformal prediction is versatile and easy to use.

• Conditional validity is important and can be achieved
(approximately).

• Interpretation and usefulness of results is not always
straightforward.

36



Conclusion

• Conformal prediction is versatile and easy to use.

• Conditional validity is important and can be achieved
(approximately).

• Interpretation and usefulness of results is not always
straightforward.

36



Conclusion

• Conformal prediction is versatile and easy to use.

• Conditional validity is important and can be achieved
(approximately).

• Interpretation and usefulness of results is not always
straightforward.

36



Future perspectives

Interesting possibilities:

• extreme classification

,

• multivariate problems, and

• time series.
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